Circuit-breaker, 3p, 140A Part no. NZMH2-ME140 Article no. 265787 Similar to illustration | Delivery programme | | | | |---|---------------------|----|---| | Product range | | | Circuit-breaker | | Protective function | | | Motor protection | | Standard/Approval | | | IEC | | Installation type | | | Fixed | | Release system | | | Electronic release | | Construction size | | | NZM2 | | Description | | | IEC/EN 60947-4-1, IEC/EN 60947-2 | | | | | The circuit-breaker fulfills all requirements for AC-3 switching category. | | | | | R.m.s. value measurement and "thermal memory" adjustable time delay setting to overcome current peaks tr: 2 – 20 s at 6 x Ir also infinity (without overload releases) All AC-3 rating data applies to direct switching by the circuit-breaker under normal operating conditions. If, for example, a contactor takes over AC-3 switching under normal operating conditions, the full rated uninterrupted current applies to the circuit-breaker, In = Iu. | | Number of poles | | | 3 pole | | Standard equipment | | | Screw connection | | Switching capacity | | | | | 400/415 V 50/60 Hz | I _{cu} | kA | 150 | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 140 | | Setting range | | | | | Overload trip | | | | | 4 | I _r | Α | 70 - 140 | | Short-circuit releases | | | | | Non-delayed | $I_i = I_n x \dots$ | | 2 - 14 | | Motor rating AC-3 50/60 Hz | | | | | 380 V 400 V | P | kW | 75 | | 660 V 690 V | P | kW | 132 | | Motor rating AC-3 50/60 Hz | | | | | 400 V | P | kW | 75 | | 660 V 690 V | P | kW | 132 | | Rated operational current AC-3 50/60 Hz | | | | | 400 V | I _e | Α | 134 | | 690 V | C | Α | 134 | # **Technical data** #### General | Standards | IEC/EN 60947 | |-----------------------------------|--| | Protection against direct contact | Finger and back of hand proof to VDE 0106 Part 100 | | Climatic proofing | Damp heat, constant, to IEC 60068-2-78 | | | | | Damp heat, cyclic, to IEC 60068-2-30 | |---|------------------|------|--| | Ambient temperature | | | | | Ambient temperature, storage | | °C | - 40 - + 80 | | Operation | | °C | -25 - +70 | | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 | | g | 20 (half-sinusoidal shock 20 ms) | | Safe isolation to EN 61140 | | | | | Between auxiliary contacts and main contacts | | V AC | 500 | | between the auxiliary contacts | | V AC | 300 | | Weight | | kg | 2.345 | | Mounting position | | | Vertical and 90° in all directions With residual-current release XFI: - NZM1, N1, NZM2, N2: vertical and 90° in all directions with plug-in adapter elements - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit: - NZM3, N3: vertical, 90° left - NZM4, N4: vertical with remote operator: - NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions | | Direction of incoming supply | | | as required | | Degree of protection | | | | | Device | | | In the operating controls area: IP20 (basic degree of protection) | | Enclosures | | | With insulating surround: IP40 With door coupling rotary handle: IP66 | | Terminations | | | Tunnel terminal: IP10
Phase isolator and strip terminal: IP00 | | Other technical data (sheet catalogue) | | | Weight Temperature dependency, Derating Effective power loss | | Circuit-breakers | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 140 | | Rated surge voltage invariability | U _{imp} | | | | Main contacts | | V | 8000 | | Auxiliary contacts | | V | 6000 | | Rated operational voltage | U _e | V AC | 690 | | Overvoltage category/pollution degree | | | 111/3 | | Rated insulation voltage | Ui | V | 1000 | | Use in unearthed supply systems | | V | ≦ ₆₉₀ | | Switching capacity | | | | | Rated short-circuit making capacity | I _{cm} | | | | 240 V | I _{cm} | kA | 330 | | 400/415 V | I _{cm} | kA | 330 | | 440 V 50/60 Hz | I _{cm} | kA | 286 | | 525 V 50/60 Hz | I _{cm} | kA | 105 | | 690 V 50/60 H | Ic | kA | 40 | | Rated short-circuit breaking capacity I _{cn} | I _{cn} | | | | Icu to IEC/EN 60947 test cycle 0-t-C0 | lcu | kA | | | 240 V 50/60 Hz | I _{cu} | kA | 150 | | 400/415 V 50/60 Hz | I _{cu} | kA | 150 | | 440 V 50/60 Hz | I _{cu} | kA | 130 | | 525 V 50/60 Hz | I _{cu} | kA | 50 | | Ics to IEC/EN 60947 test cycle 0-t-C0-t-C0 | Ics | kA | | | 240 V 50/60 Hz | I _{cs} | kA | 150 | | 400/415 V 50/60 Hz | | kA | 150 | | | I _{cs} | | | | 440 V 50/60 Hz | I _{cs} | kA | 130 | 525 V 50/60 Hz kA 37.5 | 690 V 50/60 Hz | Ics | kA | 5 | |---|-----------------|-----------------|--| | 050 V 30/00 112 | 103 | NA. | Maximum back-up fuse, if the expected short-circuit currents at the installation | | | | | location exceed the switching capacity of the circuit-breaker. | | Rated short-time withstand current | | | | | t = 0.3 s | I _{cw} | kA | 1.9 | | t = 1 s | I _{cw} | kA | 1.9 | | Utilization category to IEC/EN 60947-2 | ·cw | | A | | | | | A | | Rated making and breaking capacity | | | | | Rated operational current | l _e | Α | | | AC-1 | | | | | 380 V 400 V | l _e | Α | 140 | | 415 V | l _e | Α | 140 | | 690 V | l _e | Α | 140 | | AC3 | | | | | 380 V 400 V | I _e | Α | 134 | | 415 V | l _e | Α | 134 | | 660 V 690 V | I _e | A | 134 | | Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) | Operations | | 20000 | | Lifespan, inecrianically which max. 30 % trip by shunguluervoltage release/ | o por ations | | | | AC-1 | | | | | | Operations | | 10000 | | 400 V 50/60 Hz | Operations | | 10000 | | 415 V 50/60 Hz | Operations | | | | 690 V 50/60 Hz | Operations | | 7500 | | AC3 | | | | | 400 V 50/60 Hz | Operations | | 6500 | | 415 V 50/60 Hz | Operations | | 6500 | | 690 V 50/60 Hz | Operations | | 5000 | | Max. operating frequency | | Ops/h | 120 | | Current heat losses per pole at $I_{\rm u}$ are based on the maximum rated operational current of the frame size. | | W | 19 | | current of the fruite 322. | | | For current heat loss per pole the specification refers to the maximum rated | | | | | operational current of the frame size. | | Total downtime in a short-circuit | | ms | < 10 | | Terminal capacity | | | | | Standard equipment | | | Screw connection | | Overview | | | Basic | | | | | equipment Box • | | | | | terminal
Screw - ● ● | | | | | connection | | | | | Accessories Box - • • - | | | | | terminal | | | | | Screw • connection | | | | | Tunnel ● ● ● terminal | | | | | Connection ● ● ● | | | | | on
rear | | | | | Flat • | | | | | conductor
terminal | | Round copper conductor | | | | | Box terminal | | | | | Solid | | mm ² | 1 x (10 - 16)
2 x (6-16) | | Stranded | | mm ² | 1 x (25 - 185)
2 x (25 - 70) | | Tunnel terminal | | | | | Solid | | mm ² | 1 x 16 | | Stranded | | | | | arrannen | | / | | | Guanasa | | mm ² | 1 × (25 - 185) | | Bolt terminal and rear-side connection | | | | |---|------|-----------------|--------------------------------------| | Direct on the switch | | | | | Solid | | mm ² | 1 x (10 - 16)
2 x (10 - 16) | | Stranded | | mm ² | 1 x (25 - 50)
2 x (25 - 50) | | Al conductors, Cu cable | | | | | Solid | | mm ² | 1 x 16 | | Stranded | | mm ² | | | Stranded | | mm ² | 1 x (25 - 185) | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 2 x 16 x 0.8 | | Flat copper strip, with holes | max. | mm | 10 x 24 x 0.8 | | Cu strip (number of segments x width x segment thickness) | | | | | Box terminal | | | | | | min. | mm | 2 x 9 x 0.8 | | | max. | mm | 10 x 16 x 0.8
(2x) 8 x 15.5 x 0,8 | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 2 x 16 x 0.8 | | Flat copper strip, with holes | max. | mm | 10 x 24 x 0.8 | | Copper busbar (width x thickness) | mm | | | | Bolt terminal and rear-side connection | | | | | Screw connection | | | M8 | | Direct on the switch | | | | | | min. | mm | 16 x 5 | | | max. | mm | 24 x 8 | | Control cables | | | | | | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 1.5) | | | | | | #### **Design verification as per IEC/EN 61439** | Design vernication as per 1EG/EN 01433 | | | | |--|-----------|----|--| | Technical data for design verification | | | | | Rated operational current for specified heat dissipation | In | Α | 140 | | Equipment heat dissipation, current-dependent | P_{vid} | W | 16.17 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 70 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | Is the panel builder's responsibility. | |--|--| | 10.9.4 Testing of enclosures made of insulating material | Is the panel builder's responsibility. | | 10.10 Temperature rise | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.12 Electromagnetic compatibility | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.13 Mechanical function | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | ### **Technical data ETIM 6.0** Low-voltage industrial components (EG000017) / Motor protection circuit-breaker (EC000074) Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Motor protection circuit-breaker (ecl@ss8.1-27-37-04-01 [AG75/9013]) | [AGZ529013]) | r tooimology / on our b | 10anor (21 11 11 11 11 11 11 11 11 11 11 11 11 1 | |--|-------------------------|--| | Overload release current setting | Α | 70 - 140 | | Adjustment range undelayed short-circuit release | Α | 140 - 1960 | | Thermal protection | | No | | Phase failure sensitive | | Yes | | Switch off technique | | Electronic | | Rated operating voltage | V | 690 - 690 | | Rated permanent current lu | А | 140 | | Rated operation power at AC-3, 230 V | kW | 45 | | Rated operation power at AC-3, 400 V | kW | 75 | | Type of electrical connection of main circuit | | Screw connection | | Type of control element | | Rocker lever | | Device construction | | Built-in device fixed built-in technique | | With integrated auxiliary switch | | No | | With integrated under voltage release | | No | | Number of poles | | 3 | | Rated short-circuit breaking capacity Icu at 400 V, AC | kA | 150 | | Degree of protection (IP) | | IP20 | | Height | mm | 184 | | Width | mm | 105 | | Depth | mm | 149 | #### **Characteristics** ## **Dimensions** $\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$ $\textcircled{2}_{\text{Minimum clearance to adjacent parts}}$ ### **Additional product information (links)** | Additional product information (filing) | | | | |---|---|--|--| | IL01206006Z (AWA1230-1916) Circuit-Breaker, basic unit | | | | | IL01206006Z (AWA1230-1916) Circuit-Breaker, basic unit | ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL01206006Z2015_11.pdf | | | | Weight | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.171 | | | | Temperature dependency, Derating | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.172 | | | | Effective power loss | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.174 | | | | Setting-Specific Representation of Tripping Characteristics and Competent Assessment of their Interaction | http://www.moeller.net/binary/ver_techpapers/ver943en.pdf | | | | Busbar Component Adapters for modern Industrial control panels | http://www.moeller.net/binary/ver_techpapers/ver960en.pdf | | |