Product data sheet

Characteristics

ATV212HD22N4

variable speed drive ATV212-22kW - 30hp 480V - 3ph - EMC - IP21

Main	
Range of product Product or component type	Altivar 212
Device short name	ATV212
Product destination	Asynchronous motors
Product specific appli- cation	Pumps and fans in HVAC
Assembly style	With heat sink
Network number of phases	3 phases
Motor power kW	22 kW
Motor power hp	30 hp
Power supply voltage	$380 \ldots .480 \mathrm{~V} \mathrm{(-15} \mathrm{\ldots ..10} \mathrm{\%)}$
Power supply voltage limits	$323 \ldots . .528 \mathrm{~V}$
Supply frequency	$50 \ldots 60 \mathrm{~Hz} \mathrm{(-5...5} \mathrm{\%)}$
Network frequency	$47.5 \ldots 63 \mathrm{~Hz}$
EMC filter	$\mathrm{Class} \mathrm{C2EMC} \mathrm{filter} \mathrm{integrated}$
Line current	41.6 A for 380 V

Tightening torque	$\begin{aligned} & 24 \text { N.m - } 212 \text { Ib.in (L1/R, L2/S, L3/T) } \\ & 0.6 \text { N.m (VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES) } \end{aligned}$
Supply	Internal supply: $24 \mathrm{~V}(21 \ldots 27 \mathrm{~V}) \mathrm{DC}-<=200 \mathrm{~A}$ with overload and short-circuit protection Internal supply for reference potentiometer (1 to 10 kOhm): 10.5 V DC, $+/-5$ \% <= 10 A with overload and short-circuit protection
Analogue input number	2
Analogue input type	Configurable voltage: (VIB) 0... 10 V DC - 24 V max - 30000 Ohm - resolution: 10 bits Switch-configurable current: (VIA) $0 \ldots . .20 \mathrm{~mA}-250$ Ohm - resolution: 10 bits Switch-configurable voltage: (VIA) 0... 10 V DC - 24 V max - 30000 Ohm - resolution: 10 bits Configurable PTC probe: (VIB) 0... 6 probes -1500 Ohm
Sampling duration	$\begin{aligned} & 22 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (VIB) - analog input(s) } \\ & 3.5 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (VIA) - analog input(s) } \\ & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (RES) - discrete input(s) } \\ & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (R) - discrete input(s) } \\ & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (F) - discrete input(s) } \end{aligned}$
Response time	```7 ms +/- 0.5 ms (RY, RC) - discrete output(s) 7 ms +/- 0.5 ms (FLB, FLC) - discrete output(s) 7 ms +/- 0.5 ms (FLA, FLC) - discrete output(s) 2 ms +/- 0.5 ms (FM) - analog output(s)```
Accuracy	+/- 1% (FM) for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6$ \% (VIB) for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6 \%$ (VIA) for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	$\begin{aligned} & +/-0.2 \% \text { for output (FM) } \\ & \text { +/- } 0.15 \% \text { of maximum value for input (VIB) } \\ & \text { +/- } 0.15 \% \text { of maximum value for input (VIA) } \end{aligned}$
Analogue output number	1
Analogue output type	Switch-configurable current: (FM) $0 . . .20 \mathrm{~mA}-970$ Ohm - resolution: 10 bits Switch-configurable voltage: (FM) 0... 10 V DC - 7620 Ohm - resolution: 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic: (RY, RC) NO - 100000 cycles Configurable relay logic: (FLB, FLC) NC - 100000 cycles Configurable relay logic: (FLA, FLC) NO - 100000 cycles
Minimum switching current	3 mA at 24 V DC (configurable relay logic)
Maximum switching current	2 A at 30 V DC on inductive load $-\cos$ phi $=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ (FL, R) 2 A at 250 V AC on inductive load $-\cos \mathrm{phi}=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(F L, R)$ 5 A at 30 V DC on resistive load $-\cos \mathrm{phi}=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ (FL, R) 5 A at 250 VAC on resistive load $-\cos$ phi $=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$
Discrete input type	Programmable (RES) 24 V DC, with level 1 PLC - 4700 Ohm Programmable (R) 24 V DC, with level 1 PLC - 4700 Ohm Programmable (F) 24 V DC, with level 1 PLC - 4700 Ohm
Discrete input logic	Negative logic (sink) (F, R, RES), >= 16 V (state 0), <= 10 V (state 1) Positive logic (source) (F, R, RES), <=5 V (state 0), >= 11 V (state 1)
Acceleration and deceleration ramps	Automatic based on the load Linear adjustable separately from 0.01 to 3200 s
Braking to standstill	By DC injection
Protection type	With PTC probes for motor Motor phase break for motor Thermal protection for motor Against input phase loss for drive Line supply undervoltage for drive Line supply overvoltage and undervoltage for drive Against exceeding limit speed for drive Break on the control circuit for drive Overvoltages on the DC bus for drive Overcurrent between output phases and earth for drive Input phase breaks for drive Short-circuit between motor phases for drive Thermal power stage for drive Overheating protection for drive
Dielectric strength	5092 V DC between control and power terminals 3535 V DC between earth and power terminals
Insulation resistance	>= 1 MOhm at 500 V DC for 1 minute
Frequency resolution	$0.024 / 50 \mathrm{~Hz}$ for analog input 0.1 Hz for display unit

Communication port protocol	APOGEE FLN BACnet LonWorks
	METASYS N2 Modbus
Connector type	1 RJ45
	1 open style
Physical interface	2 -wire RS 485
Transmission frame	RTU
Transmission rate	9600 bps or 19200 bps
Data format	8 bits, 1 stop, odd even or no configurable parity
Type of polarization	No impedance
Number of addresses	$1 \ldots 247$
Communication service	Monitoring inhibitable
	Read device identification (43)
	Read holding registers (03) 2 words maximum
Time out setting from 0.1 to 100 s	
Write multiple registers (16) 2 words maximum	
Option card	Write single register (06)
Width	Communication card for LonWorks
Height	Vertical +/- 10 degree
Depth	240 mm
Product weight	420 mm
Fower dissipation in W flow rate	214 mm

Environment

Electromagnetic compatibility	Voltage dips and interruptions immunity test conforming to IEC 61000-4-11 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6
	$1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu$ surge immunity test level 3 IEC $61000-4-5$
	Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC $61000-4-3$
	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2

Standards	EN 55011 class A group 1
	EN 61800-3
	EN 61800-3 category C2
	EN 61800-3 category C3
	EN 61800-3 environments 1 category C1
	EN 61800-3 environments 1 category C2
	EN 61800-3 environments 1 category C3
	EN 61800-3 environments 2 category C1
	EN 61800-3 environments 2 category C2
	EN 61800-3 environments 2 category C3
	EN 61800-5-1
	IEC 61800-3
	IEC 61800-3 category C2
	IEC 61800-3 category C3
	IEC 61800-3 environments 1 category C1
	IEC 61800-3 environments 1 category C2
	IEC 61800-3 environments 1 category C3
	IEC 61800-3 environments 2 category C1
	IEC 61800-3 environments 2 category C2
	IEC 61800-3 environments 2 category C3
	IEC 61800-5-1
	UL Type 1
Product certifications	CSA
	C-Tick
	NOM 117
Marking	UL

Offer Sustainability

Sustainable offer status	Not Green Premium product
RoHS	Compliant - since $1050-$ Schneider Electric declaration of conformity declaration of conformity
Product end of life instruction	Available 园 Download End Of Life Manual

Product data sheet

ATV212HD22N4

Dimensions Drawings

Dimensions in mm

ATV212H	a	b	c	G	H	K	\varnothing
D22M3X D22N4, D30N4	240	420	214	206	403	10	6
D37N4, D45N4	240	550	244	206	529	10	6

Dimensions in in.

ATV212H	a	b	c	G	H	K	Ø
D22M3X D22N4, D30N4	9.45	16.54	8.43	8.11	15.87	0.39	0.24
D37N4, D45N4	9.45	21.65	9.60	8.11	20.83	0.39	0.24

EMC mounting plate (supplied with drive)

Dimensions in mm

ATV212H	b1	c1
D22M3X D22N4, D30N4	122	120
D37N4, D45N4	113	127

Dimensions in in.

ATV212H	b1	c1
D22M3X D22N4, D30N4	4.80	4.72
D37N4, D45N4	4.45	5.00

Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit. $\frac{\mathrm{mm}}{\mathrm{in} .}$

Mounting Types

Type A mounting
mm

Type B mounting

Type C mounting
$\frac{\mathrm{mm}}{\mathrm{in} .}$

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP21. The protective blanking cover may vary according to the drive model, see opposite.

Specific Recommendations for Mounting in an Enclosure

To help ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Check that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).

- Use special filters with UL Type 12/IP54 protection.
- Remove the blanking cover from the top of the drive.

Sealed Metal Enclosure (IP54 Degree of Protection)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions, such as dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

3-Phase Power Supply

A1: ATV 212 drive
KM1: Contactor
Q1: Circuit breaker
Q2: GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2:
T1: 100 VA transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202

All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)

Voltage/current selection for analog I/O (VIA and VIB)

Voltage/current selection for analog I/O (FM)

Selection of logic type

(1) negative logic
(2) positive logic

Logic Inputs According to the Position of the Logic Type Switch

"Source" position

"Sink" position

"PLC" position with PLC transistor outputs
(1) PLC ATV

2-wire control

F: Forward
R: Preset speed
(2) ATV 212 control terminals

3-wire control

F: Forward
R: Stop
RES: Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs

Voltage analog inputs
External +10 V

(2) ATV 212 control terminals
(4) Speed reference potentiometer 2.2 to $10 \mathrm{k} \Omega$

(2) ATV 212 control terminals

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(2) ATV 212 control terminals
(5) Source 0-20 mA, 4-20 mA, X-Y mA

Analog input VIA configured as positive logic input ("Source" position)

(2) ATV 212 control terminals

Analog input VIA configured as negative logic input ("Sink" position)

(2) ATV 212 control terminals

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type (A, B or C). For intermediate temperatures ($45^{\circ} \mathrm{C}$ for example), interpolate between 2 curves.

X Switching frequency

