ASM

ograniczniki przepięć

do zastosowań napowietrznych w sieciach średnich napięć

\author{

- wytrzymywany prąd zwarciowy aż 31,5 kA
 - duża zdolność pochłaniania energii
 - bardzo dobre własności mechaniczne
 osłona zewnętrzna wykonana z płynnego silikonu, w procesie zapewniającym
 szczelność ogranicznika
 - doskonałe własności samooczyszczania osłony
}

1 zASTOSOWANIE

Do ochrony izolacji urządzeń elektroenergetycznych prądu przemiennego przed niszczącym działaniem przepięć piorunowych i łączeniowych. Mogą być również wykorzystane jako pomocnicze izolatory wsporcze, np. w słupowych stacjach transformatorowych, gdzie rolę taką zazwyczaj pełnią izolatory ceramiczne.

zabezpieczenie kabla SN - zejście z linii napowietrznej

zabezpieczenie uproszczonej stacji transformatowej 15/0,4 kV

zabezpieczenie kabla SN - zejście z linii napowietrzne

2 warunki pracy

■ napowietrzne (klimat umiarkowany) mogą być stosowane jako wnętrzowe,

- wysokość do 1000 m n.p.m.,
- temperatura pracy i przechowywania od $-55^{\circ} \mathrm{C}$ do $+55^{\circ} \mathrm{C}$

■ częstotliwość napięcia sieci nie powinna być mniejsza niż 48 Hz i większa niż 62 Hz ,
■ wartość skuteczna napięcia przemiennego doprowadzonego długotrwale do zacisków ogranicznika nie powinna przekraczać jego napięcia trwałej pracy U,
■ wartość skuteczna składowej okresowej prądu zwarcia w miejscu zainstalowania ogranicznika nie powinna być większa niż $31,5 \mathrm{kA}$,
■ pozycja pracy ograniczników ASM może być dowolna: od pionowej do poziomej, gdy moment dokręcania śrub $\mathrm{M}_{\mathrm{s}} \leq 20 \mathrm{Nm}$, a moment gnący $\mathrm{M}_{\mathrm{g}} \leq 250 \mathrm{Nm}$.

3 budowa I zasada dziatANIA

Podstawową częścią ogranicznika jest stos warystorów (1) wykonanych z tlenku cynku z dodatkiem szeregu tlenków innych metali. Warystory wykonane według wyspecjalizowanej technologii ceramicznej charakteryzują się wysoką nieliniowością charakterystyki napięciowo-prądowej, dużą obciążalnością prądową i stabilnością parametrów elektrycznych w ciągu długoletniej pracy pod napięciem roboczym. Stos warystorów znajduje się w materiale izolacyjnym, który stanowi obudowę wewnętrzną (2) ogranicznika i zapewnia bardzo dobrą wytrzymałość mechaniczną. Z obu stron ogranicznika znajdują się elektrody z aluminium (3). Styk elektryczny między warystorami i elektrodami zapewniony jest przez odpowiedni docisk (4). Osłona zewnętrzna ogranicznika (5) wykonana jest z silikonu LSR o bardzo dobrych własnościach elektroizolacyjnych. Konstrukcja formy do bezpośredniego wtrysku silikonu LSR zapewnia usunięcie pęcherzyków powietrza z wnętrza ogranicznika. Jest to potwierdzane w jednej z prób wyrobu - pomiarze wyładowań niezupełnych.

ogranicznik ASM 18N

Silikon jest jedynym materiałem na osłony, który może przenosić własności hydrofobowe (tj. niezwilżalność) na powierzchniową warstwę zabrudzeń. Powoduje to zmniejszenie prądu upływu i niebezpieczeństwa przeskoku iskry. Silikon charakteryzuje się również właściwością samooczyszczania. Ograniczniki ASM posiadają jednoczęściową i jednolitą osłonę, bez naciąganych na rdzeń kloszy. Pewne jest więc, że zanieczyszczenia nie będą gromadzić się na powierzchni osłony, szczególnie na styku rdzeń - klosz.

Zasada działania ogranicznika jest następująca: przy napięciu roboczym przez prawidłowo zainstalowany ogranicznik płynie prąd czynny rzędu mikroamperów. Każdy wzrost napięcia na linii, a więc i na zaciskach ogranicznika, powoduje natychmiastowy wzrost płynącego prądu. Przewodność warystorów wzrasta, zgodnie z ich charakterystyką napięciowo-prądową i ładunek przepięcia jest odprowadzany przez ogranicznik do ziemi. Spadek napięcia na ogranicznikach, zwany napięciem obniżonym, przy prawidłowym doborze ogranicznika do warunków pracy, nie przekracza wartości bezpiecznej dla chronionej izolacji. Powrót do napięcia roboczego kończy działanie ogranicznika, który przechodzi w stan oczekiwania na kolejne przepięcie, oddając otoczeniu energię cieplną. Działanie ogranicznika nie powoduje żadnych zakłóceń w pracy sieci. Prąd zwarcia, jaki może popłynąć przez warystory w przypadku ich uszkodzenia nie powoduje gwałtownego i niebezpiecznego dla otoczenia rozerwania osłony, jak może to mieć miejsce w ogranicznikach z osłoną porcelanową i nie wymaga stosowania odpowiednich zabezpieczeń nadciśnieniowych.

Ogranicznik może być wyposażony w odłącznik, który w prosty sposób sygnalizuje jego uszkodzenie. W przypadku pojawienia się prądu zwarciowego płynącego przez uszkodzony ogranicznik, następuje zadziałanie odłącznika zgodnie z jego charakterystyką czasowo-prądową (wykres 1). Następuje trwałe odłączenie uziemienia ogranicznika. Tworzy się widoczna przerwa w obwodzie. Rozwiązanie to zapewnia bezawaryjną pracę sieci oraz łatwą lokalizację braku ochrony przeciwprzepięciowej.
ogranicznik ASM z odłącznikiem i wspornikiem izolacyjnym

i wspornikiem izolacyjnym

$$
2+2
$$

wykres 1. charakterystyka czasowo-prądowa odłącznika

4

ZGODNOŚĆ Z NORMAMI

PN-EN 60099-4: 2009+A2: 2009 „Ograniczniki przepięć - Część 4: Beziskiernikowe ograniczniki przepięć z tlenków metali do sieci prądu przemiennego".

5 zALETY

- wysoki stopień ochrony,
- stabilność parametrów elektrycznych w czasie trwałego oddziaływania napięcia roboczego,
■ duża zdolność pochłaniania energii,
- długa trwałość eksploatacyjna,

■ mniejsza masa w porównaniu z ogranicznikami porcelanowymi,
■ szeroki asortyment akcesoriów montażowych, pozwalający użytkownikowi na ich dobór stosownie do indywidualnych potrzeb.

ZALETY SILIKONU LSR:

■ elastyczność nawet w niskich temperaturach,

- wysoka wytrzymałość mechaniczna,
- bardzo dobre własności hydrofobowe,
- duża wytrzymałość na starzenie.

mokra osłona ogranicznika ASM

6 podstawowezasady doboru

Właściwy dobór ogranicznika, o parametrach dostosowanych do miejsca i warunków pracy decyduje w dużej mierze o skuteczności ochrony oraz trwałości samego ogranicznika. Prawidłowy dobór ma na celu przede wszystkim zapewnienie optymalnych warunków ochrony izolacji chronionych obiektów.

Wybór ogranicznika należy poprzedzić zebraniem kompletnych i wiarygodnych informacji na temat:

- sieci elektroenergetycznej, w której zostanie zainstalowany ogranicznik,
- warunków pracy przewidywanych w miejscu zainstalowania,
- obiektów chronionych.

Charakterystyka sieci powinna dotyczyć takich podstawowych parametrów, jak:

- najwyższe napięcie sieci,
- częstotliwość napięcia,
- współczynnik zwarcia doziemnego sieci i stopień stabilności warunków, jakie kształtują jego wartość,
- maksymalny czas trwania zwarcia doziemnego,
- maksymalna wartość przepięć wolnozmiennych (dynamicznych) oraz maksymalny czas ich trwania,
- prąd zwarciowy w miejscu zainstalowania ogranicznika.

Warunki pracy przewidziane dla ogranicznika powinny uwzględniać:

- temperaturę otaczającego powietrza,
- wysokość miejsca instalowania nad poziomem morza,
- warunki zabrudzeniowe,
- inne ewentualne zagrożenia dla ogranicznika,
- przewidywaną pozycje pracy,
- przewidywane miejsce i sposób instalowania,

■ przewidywane obciążenia mechaniczne,
■ ewentualne ograniczenia odległości międzyfazowych.

Odnośnie obiektów chronionych celowa jest znajomość następujących informacji:

- rodzaj aparatury podlegającej ochronie,
- sposób włączenia do sieci,
- długość odcinków kablowych, jeżeli są stosowane,
- znamionowe napięcie probiercze izolacji chronionej aparatury,
- przewidywana maksymalna długość przewodów między ogranicznikiem a aparaturą podlegającą ochronie.

Najważniejszym parametrem ogranicznika beziskiernikowego jest napięcie trwałej pracy $\mathbf{U}_{\mathbf{c}}$. Z napięciem tym wiążą się inne parametry, a głównie gwarantowany poziom ochrony.

WYBÓR NAPIĘCIA TRWAŁEJ PRACY Uc

Generalnie przy wyborze napięcia trwałej pracy muszą być spełnione dwa podstawowe warunki:

■ U. $\mathbf{U}_{\text {c }}$ powinno być większe od napięcia sieciowego, które może długotrwale wystąpić w warunkach eksploatacji na zaciskach ogranicznika,
■ wytrzymałość ogranicznika na przepięcia wolnozmienne powinna być wyższa od spodziewanych w sieci przepięć wolnozmiennych, tzn. charakterystyka napięciowo-czasowa wytrzymałości T ogranicznika powinna przebiegać powyżej wartości spodziewanych przepięć, jakie mogą wystąpić w siecii).
$\mathrm{T}\left[\mathrm{U} / \mathrm{U}_{\mathrm{c}}\right]$

wykres 2. typowa charakterystyka wytrzymałości T na przepięcia wolnozmienne (dorywcze)

WYBÓR ZNAMIONOWEGO PRĄDU WYŁADOWCZEGO

Dla ochrony transformatorów rozdzielczych w liniach średnich napięć, bez przeprowadzania szczegółowej analizy układu sieci przyjmuje się, że ograniczniki o znamionowym prądzie wyładowczym $\mathbf{1 0}$ kA stanowią wystarczająco skuteczną ochronę.

[^0]
PRZYKŁADY ZASTOSOWAŃ

OGRANICZNIK MIĘDZY FAZĄ A ZIEMIĄ

Sieć z izolowanym punktem zerowym lub sieć z kompensacją prądu ziemnozwarciowego z nieznanym czasem t do wyłączenia zwarcia
W warunkach jednofazowego zwarcia do ziemi napięcie na pozostałych fazach może osiągnąć wartość $\mathbf{U}_{\mathbf{m}}$. Napięcie to może utrzymywać się długo, a jeżeli czas do wyłączenia zwarcia nie jest znany, to wymagane napięcie trwałej pracy $\mathbf{U}_{\mathbf{c}}$ ogranicznika powinno wynosić:

$$
\mathrm{U}_{\mathrm{c}} \geq \mathrm{U}_{\mathrm{m}}
$$

Sieć z izolowanym punktem zerowym oraz z samoczynnym wyłączaniem zwarć doziemnych lub z wyłączaniem po znanym okresie czasu t
Dobór napięcia $\mathbf{U}_{\mathbf{c}}$ dokonuje się pod kątem czasu trwania jednofazowego zwarcia doziemnego. Przepięcie wolnozmienne na fazach nie uziemionych może osiągnąć w stosunku do ziemi wartość najwyższego napięcia sieci $\mathbf{U}_{\mathbf{m}}$. Jeżeli zwarcie doziemne jest wyłączane po czasie \mathbf{t}, trwałe napięcie pracy ogranicznika powinno wynosić:

$$
U_{c} \geq \frac{U_{m}}{T}
$$

Sieć ze skutecznie uziemionym punktem zerowym

Jeżeli współczynnik zwarcia doziemnego $\mathbf{k}_{\mathbf{z}} \leq \mathbf{1 , 4}$ uważa się, że sieć ma skutecznie uziemiony punkt zerowy. W tym przypadku trwałe napięcie pracy ogranicznika powinno spełnić zależność:

$$
U_{c} \geq \frac{U_{m}}{T \times \sqrt{3}} \times k_{z}
$$

Uwaga: W żadnym jednak przypadku $\mathbf{U}_{\mathbf{c}}$ nie może być mniejsze niż:

$$
\frac{U_{m}}{\sqrt{3}}
$$

OGRANICZNIK MIĘDZY FAZAMI

Niezależnie od sposobu uziemienia punktu zerowego, dla ogranicznika instalowanego pomiędzy fazami, napięcie trwałej pracy $\mathbf{U}_{\mathbf{c}}$ powinno być większe od najwyższego napięcia międzyprzewodowego, które może długotrwale wystąpić w eksploatacji na zaciskach ogranicznika i powinno wynosić:

$$
U_{c} \geq U_{m} \times 1,05
$$

gdzie 1,05 jest współczynnikiem bezpieczeństwa przyjmowanym z uwagi na możliwą zawartość harmonicznych w napięciu roboczym sieci.
W przypadku instalowania ogranicznika między fazami zacisk oznaczony znakiem uziemienia może być dołączony do dowolnej z faz.

OGRANICZNIK MIĘDZY ZEREM TRANSFORMATORA A ZIEMIA

Sieć \mathbf{z} izolowanym punktem zerowym

Napięcie trwałej pracy ogranicznika powinno wynosić:

$$
U_{c} \geq \frac{U_{m}}{T \times \sqrt{3}}
$$

i zależy od spodziewanego czasu wyłączania zwarcia doziemnego.

Sieć ze skutecznie uziemionym punktem zerowym ($k_{z} \leq 1,4$)
W przypadku zwarcia doziemnego w sieci ze skutecznie uziemionym punktem zerowym, przepięcie wolnozmienne w nie uziemionym zerze transformatora nie przekracza wartości $0,46 \times \cup_{m}$, a czas wyłączania zwarcia następuje szybciej niż w ciągu 3 s. Stąd zalecane napięcie trwałej pracy ogranicznika:

$$
\mathrm{U}_{\mathrm{c}} \geq \frac{0,46 \times \mathrm{U}_{\mathrm{m}}}{\mathrm{~T}}
$$

7 dANE TECHNICZNE

Tabela 3. DANE TECHNICZNE

- Częstotliwość znamionowa
■ Warunki pracy - Iokalizacja

■ Znamionowy prąd wyładowczy 8/20 $\mu \mathrm{s}$.10 kA

- Klasa rozładowania linii 1
- Długotrwały prąd wyładowczy 280 A [2000 $\mu \mathrm{s}]$
- Graniczny prąd wyładowczy 4/10 $\mu \mathrm{s}$ 100 kA
- Wytrzymywany prąd zwarciowy $31,5 \mathrm{kA}$ [200 ms]
■ Zdolność pochłaniania energii E/1 kV (U_{c}) 4,4 [kJ]
- Zdolność pochłaniania energii E/1 kV (U_{r}) 3,5 [kJ]
OBCIAŻ̇ENIA MECHANICZNE
■ Moment gnący 250 Nm
■ Graniczny moment skręcający 250 Nm
- Nośność 625 N

DANE MONTAŻOWE

■ Moment dokręcania wspornika izolacyjnego do konstrukcji
■ Moment dokręcania akcesoriów liniowych i uziomowych do ogranicznika
Clen

■ Minimalne odstepy w powietrzu zgodnie z PN-E-05115: 2002 .,Instalacje elektroenergetyczne pradu przemiennego o napięciu wyższym od 1 kV"

Tabela 4. DANE MONTAŻOWE

U_{n}	U_{m}	Mininalne odstępy w powietrzu a
$[\mathrm{kV}]$	$[\mathrm{kV}]$	$[\mathrm{mm}]$
6	7,2	174
10	12	204
15	17,5	214
20	24	274
30	36	374

$\mathbf{U}_{\mathbf{n}}$ - napięcie nominalne sieci; $\mathbf{U}_{\mathbf{m}}$ - najwyższe napięcie urządzenia; \mathbf{a} - odległość pomiędzy osią ogranicznika i konstrukcją uziemioną oraz pomiędzy osiami ograniczników sąsiednich faz

8
 SZKIC WYMIAROWY

9 AKCESORIA

AKCESORIA LINIOWE (GÓRNE)

AKCESORIA UZIOMOWE (DOLNE)

AKCESORIA MONTAŻOWE

wspornik montażowy kątowy

wspornik montażowy prosty

wspornik izolacyjny
AKCESORIA DODATKOWE

osłona na ptaki

11
PRZYKŁAD ZAMAWIANIA

ASM $18 \mathrm{~N}+\mathrm{A}+$ W3			
ASM	oznaczenie	A	zacisk liniowy typu A
18	napięcie trwałej pracy	W3	wspornik izolacyjny z odłącznikiem
N	droga upływu		

UWAGA: Ograniczniki pakowane są po 1 sztuce wraz z zamówionymi akcesoriami. Akcesoria montażowe i dodatkowe
zamawiane są jako osobna pozycja

[^0]: ${ }^{3)}$ W sieciach średnich napięć przepięcia wolnozmienne występują najczęściej przy jednofazowych zwarciach doziemnych, a ich wartość i czas trwania zależy od zastosowanego układu ochrony ziemnozwarciowej oraz od sposobu uziemienia punktu zerowego sieci

